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3 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Received 27 July 2001

Abstract. The electronic structures of the metallic and insulating phases of the alloy series Ca2−xSrxRuO4

(0 ≤ x ≤ 2) are calculated using LDA, LDA+U and Dynamical Mean-Field Approximation methods. In
the end members the groundstate respectively is an orbitally non-degenerate antiferromagnetic insulator
(x = 0) and a good metal (x = 2). For x > 0.5 the observed Curie-Weiss paramagnetic metallic state which
possesses a local moment with the unexpected spin S = 1/2, is explained by the coexistence of localized
and itinerant Ru-4d-orbitals. For 0.2 < x < 0.5 we propose a state with partial orbital and spin ordering.
An effective model for the localized orbital and spin degrees of freedom is discussed. The metal-insulator
transition at x = 0.2 is attributed to a switch in the orbital occupation associated with a structural change
of the crystal.

PACS. 75.30.-m Intrinsic properties of magnetically ordered materials – 75.50.-y Studies of specific
magnetic materials

1 Introduction

The discovery of unconventional superconductivity in
Sr2RuO4 [1,2] has evoked considerable interest in the elec-
tronic properties of ruthenates. Curiously the substitution
of the smaller Ca2+-ions for Sr2+-ions does not lead to
a more metallic state but to an antiferromagnetic (AF)
Mott insulator with a staggered moment of S = 1 as ex-
pected for a localized Ru4+-ion which has 4 electrons in
the t2g-subshell. As will be discussed below, this insulat-
ing behavior is driven by a crystallographic distortion and
a subsequent narrowing of the Ru-4d bands. The com-
plete series of isoelectronic alloys for intermediate con-
centrations has recently been synthesized and studied by
Nakatsuji and Maeno [3,4]. This gives a rare opportunity
to examine the evolution of the electronic structure from a
multi-band metal to a Mott-insulator transition in an iso-
electronic system. The evolution is not at all monotonic
and the metal-insulator transition does not take place as
a simple Mott transition but proceeds through a series of
intermediate regions with unexpected behavior.

The most dramatic example is the system at a con-
centration x = xc = 0.5. At this critical concentration
the susceptibility shows a free Curie form with a S = 1/2
moment (not S = 1) per Ru-ion coexisting with metal-
lic transport properties. This critical concentration repre-
sents the boundary of the paramagnetic metallic region
which evolves as Ca is substituted in the good metal,
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Sr2RuO4. At higher Ca concentrations (xc > x > 0.2), the
alloys enter a region with AF correlations at low tempera-
ture but still with metallic properties. Insulating behavior
appears only at smaller values of x < 0.2. The challenge
that we address in this paper, is to understand this unex-
pected and nonmonotonic evolution and in particular the
exotic behavior in the vicinity of the critical concentration
at x ≈ xc.

We begin by discussing the end members. Sr2RuO4 is
a good metal. Its Fermi surface has been determined by de
Haas-van Alphen experiments [7] and agrees very well with
the predictions of the local density approximation (LDA)
in the density functional theory [8]. Ca2RuO4 is a AF Mott
insulator and it can be well described by augmenting the
LDA by a mean field to include the onsite correlation —
the so-called LDA+U method [9]. The third section of this
paper is devoted to the examination of the intermediate
concentrations by performing calculations for a series of
characteristic x-values. The most challenging is the region
x ≈ xc = 0.5 where there are strong correlations but no
symmetry breaking so that both LDA and LDA+U are in-
applicable. At this concentration we employ the recently
developed ab initio computational scheme combining lo-
cal density approximation and dynamical mean field the-
ory [10–12] (LDA+DMFT) [13,14]. We use LDA calcula-
tions to determine the input parameters in the effective
Anderson impurity model which in turn is treated using
a non-crossing approximation (NCA) [15]. These calcula-
tional schemes give us reliable information on the evolu-
tion of the electronic distribution among the 3 orbitals in
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Table 1. Crystallographic data, which is used for LDA calculations: symmetry group, parameters of lattice, atomic positions
and distance between nearest atoms. Symbol “/”denotes that for this structure corresponding parameter do not exist.

Compound Sr2RuO4 Ca1.5Sr0.5RuO4 Ca1.8Sr0.2RuO4 Ca2RuO4

Symmetry group I4/mmm I41/acd P21/c Pbca

a [Å] 3.8603 5.3195(1) 5.3338(4) 5.6323(3)

b [Å] 3.8603 5.3195(1) 5.3162(4) 11.7463(5)

c [Å] 12.729 25.1734(5) 12.4143(8) 5.3877(2)

Vol. [Å3] 189.69 712.33(2) 352.01(4) 356.45

β [o] / / 90.06(1) /

Ca(Sr) x 0.0 0.0 0.0141(21)/0.4903(24) 0.0593(4)

Ca(Sr) y 0.0 0.25 0.0137(23)/0.5273(23) 0.3525(2)

Ca(Sr) z 0.14684 0.5492(1) 0.3483(2) 0.0021(5)

O1 x 0.0 0.1933(2) 0.1939(6) 0.3005(4)

O1 y 0.0 0.4433(2) 0.3079(6) 0.0272(2)

O1 z 0.3381 0.125 0.0/0.0196(5) 0.1952(4)

O2 x 0.5 0 −0.0344(5) −0.0212(4)

O2 y 0.0 0.25 −0.0064(7) 0.1645(2)

O2 z 0.0 0.4568(1) 0.1649(2) −0.0692(3)

Ru−O1 [Å] 1.930 1.929(1) 1.936(3)/1.926(3) 2.015(2)

1.941(3)/1.952(3) 2.018(2)

Ru−O2 [Å] 2.061 2.059(3) 2.056(3)/2.056(3) 1.972(2)

Ca−O1 [Å] 2.692 2.399(2) 2.316(7)/2.286(10) 2.292(3)

2.994(2) 2.445(8)/2.502(9) 2.433(3)

2.838(11)/2.934(10) 2.565(3)

3.141(10)/3.037(10) 3.313(3)

Ca−O2 [Å] 2.439 2.326(4) 2.294(4)/2.296(4) 2.287(3)

2.737 2.664(1) 2.416(12)/2.488(13) 2.362(3)

2.559(13)/2.444(13) 2.399(3)

2.772(13)/2.845(13) 3.118(3)

2.932(12)/2.912(13) 3.296(3)

the t2g-subshell, which we shall show is the key to under-
standing the electronic properties. The paper concludes
with a discussion and summary of our results. A brief ac-
count of this work has appeared elsewhere [16].

2 End members: Sr2RuO4 and Ca2RuO4

We start with Sr2RuO4 (or x = 2). This is a good metal,
forming a 3-dimensional but anisotropic Landau-Fermi
liquid at low temperatures [17,18]. Sr2RuO4 crystallizes
in the undistorted single-layered K2NiF4-structure [19,20]
(see Fig. 1) with lattice parameters quoted in Table 1. The
RuO6-octahedra are slightly elongated along the c-axis.
The Ru-ions have a formal valence Ru4+ and have a
tetragonal local symmetry. The 2p-O levels are completely
filled, leaving 4 electrons in t2g-subshell of the 4d-Ru lev-
els. The crystal field level scheme that would apply for an
isolated Ru4+-ion is shown in Figure 2. The upper eg-shell
(not included in this figure) is empty. The splitting be-
tween the xy-orbitals and the degenerate {xz, yz}-orbitals
is small. But the xy-orbitals π-hybridize with 2p-orbitals

Fig. 1. Basic crystal structure of isoelectronic alloy series
Ca2−xSrxRuO4.
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Fig. 2. Local electronic structure of isoelectronic alloy se-
ries Ca2−xSrxRuO4. In Ca2RuO4 spin-down electron occupies
xy-orbital (left panel); In Sr2RuO4 spin-down electron occu-
pies xz/yz-orbitals (right panel).
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Fig. 3. Density of t2g states for Sr2RuO4 obtained from LDA
calculation. The solid line is the DOS for the (xz, yz)-orbitals
and the dashed line for the xy-orbital. (n(yz,zx), nxy) indicates
the electron occupation of the orbitals.

of all 4 in-plane O-neighbors while the xz(yz)-orbitals
π-hybridize only with the 2 O-neighbors along the x(y)-
axis. As a result the xy-bandwidth is approximately twice
the {xz, yz} bandwidth (see Fig. 3). The LDA calcula-
tions [8] give 3 Fermi surface sheets, one with essentially
xy and two with mixed {xz, yz} character. Their shape
and volume agree with the de Haas-van Alphen results [7].

The volumes contained by the Fermi surface sheets
give an almost equal occupancy of each of the 3 t2g-
orbitals. If we denote the occupancy of the {xz, yz} and
(xy)-orbitals by (n(α,β), nγ), then Sr2RuO4 has the frac-
tional occupancy (8/3, 4/3). Although there are clear
signs of strong correlations in the enhanced effective mass
(enhancements ∼3−4 [7,21,22]) and low effective Fermi
temperature, the low-temperature behavior is clearly that
of a well-defined Landau-Fermi liquid.

Fig. 4. Scheme of crystal distortion of Ca2−xSrxRuO4. Con-
secutive structural change of the O-octahedra in the alloy series
Ca2−xSrxRuO4. (a) Ideal structure K2NiF4-type (space group
I4/mmm); (b) Space group I41/acd derives from I4/mmm by
rotation around [001]-axis; (c) Space group P21/c described
by the additional rotation around a free axis in the octahe-
dron basis plane. (d) Space group Pbca derived from the ideal
structure by rotation around the [001]- and [110]-axes.

Turning to the other end member, Ca2RuO4 or x = 0,
the substitution of the smaller Ca2+-ion for Sr2+ does not
lead to a uniform shrinking of the lattice parameter. In-
stead the RuO6-octahedra undergo a combined rotation
and tilt (Pbca-structure) so that the Ru-O bond length
is preserved but the Ru-Ru separation contracts. In Fig-
ure 4 we illustrate the relevant distortion of the crystal
structure. This distortion bends the Ru-O-Ru bond an-
gle away from 180o, thereby reducing the bandwidth of
the t2g-orbitals. Also the smaller size of the Ca2+-ion de-
creases the interlayer distance (i.e. the c-axis lattice con-
stant) which results in a change from elongation to a com-
pression of the RuO6-octahedra. This in turn changes the
sign of the energy splitting between the (xy)- and (xz, yz)-
orbitals, so that now the xy-orbital lies lower in energy
(see Fig. 2). The crystal structure is orthorhombic (see
Tab. 1). All RuO6-octahedra are equivalent with a rota-
tion around their long axis (0 0 1) and a tilt around the
diagonal in-plane axis (1 1 0) (Fig. 4d). Note all inplane
O-ions are equivalent in this structure.

Ca2RuO4 is an AF insulator. The LDA+U method [9]
which is based upon spin-orbital unrestricted Hartree-
Fock equation (i.e. a static mean field treatment),
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Fig. 5. Phase diagram of Ca2−xSrxRuO4. The phases are de-
noted by the abbreviations P-I for paramagnetic insulating,
P-M for paramagnetic metallic, AF-I for antiferromagnetic in-
sulating, AF-M for antiferromagnetic metallic, M-M for mag-
netic metallic and SC for superconducting (Figure is taken
from [3]).

generally works well for magnetic long range ordered insu-
lators [23]. We applied this method to Ca2RuO4 choosing
parameter values U = 1.5 eV and J = 0.7 eV for the onsite
Coulomb repulsion and the intra-atomic Hund’s Rule cou-
pling. The method converged to an AF insulating ground-
state in which the lower xy-orbital is fully occupied and
the majority spin (xz, yz)-orbitals are also occupied. The
sublattice magnetization is reduced by hybridization with
the O-orbitals from the full value of 2 µB expected for
S = 1, to 1.35 µB. The energy gap is unusually small
(0.17 eV). Both these values agree well with experiment,
1.3 µB [19] and 0.2 eV [24] respectively. Further treating
spin-orbit coupling in second order perturbation theory
gives preferred orientation of the magnetic moment along
the orthorhombic b-axis (or [1 1 0] in tetragonal notation)
also in agreement with experiment [25] (see Appendix).

The LDA+U method gives a satisfactory description
of the electronic structure of Ca2RuO4. In terms of our
previous notation, Ca2RuO4 has an integer orbital occu-
pancy of (2,2). The key issue that we address below is the
evolution of the electronic structure between these very
different end members.

3 Evolution of the electronic structure
at intermediate concentrations

The results of our calculations presented above con-
firm the contrasting behavior of the end members,
Sr2RuO4 and Ca2RuO4. The experimental investigations
of Nakatsuji and Maeno show a complex evolution of the
electronic structure which they break down into 3 concen-
tration regions, labelled Region I (0 < x < 0.2), Region II
(0.2 < x < 0.5) and Region III (0.5 < x < 2), each with
its own characteristic behavior. Their results are summa-
rized in the phase diagram (Fig. 5). Below we discuss each
of these regions, starting with the Sr-rich region.

3.1 Region III (2 > x > 0.5)

The experiments of Nakatsuji and Maeno show that super-
conductivity is rapidly suppressed when Ca is substituted
for Sr in Sr2RuO4. This suppression is a natural conse-
quence of disorder for an unconventional superconductor.
More interesting is the evolution of the spin susceptibil-
ity which progressively increases with Ca substitution and
evolves from an enhanced Pauli susceptibility into a Curie-
Weiss form. The characteristic (Curie-Weiss) temperature,
θcw(< 0), approaches zero for x → 0.5. At the same time
the linear term in the low-temperature specific heat is also
enhanced but the Wilson ratio defined at low tempera-
tures is strongly enhanced and approaches a value of 40
as x→ xc.

This value of xc = 0.5 is a critical value, separat-
ing a metallic and orbitally ordered phase with antifer-
romagnetic spin correlation (x < xc) from the paramag-
netic metal for x > xc. As mentioned above, one observes
θcw ≈ 0 for x ≈ xc. Even more remarkable is the evolution
of the magnetic moment which takes a value of S = 1/2
as x→ xc [5,6]. This value is quite distinct from the value
of S = 1 in Ca2RuO4 — the expected value for a localized
Ru4+-ion with 2 holes in the t2g-subshell. Moreover, alloys
with x ≈ xc are metallic, not insulating. The explanation
of this unexpected behavior presents a clear challenge.

As discussed above Sr2RuO4 is a good metal with an
electronic structure that divides into two distinct and frac-
tionally filled bands, a dxy-band with ≈ 4/3 electrons per
Ru and the hybridized dxz,yz-band pair with 8/3 electrons
per Ru. Now the evolution with Ca substitution towards
a Mott insulating state occurs because the bands are nar-
rowed by rotation of the RuO6 octahedra. In general, the
evolution from a metal to a Mott-insulator is driven by
growing Umklapp scattering. This is very clear in one di-
mension where studies of chains and ladders show insu-
lating behavior at half-filling already for arbitrarily small
Coulomb repulsion driven by elastic Umklapp scattering
processes across the Fermi surface. Here we are dealing
with an approximately two-dimensional multi-band situa-
tion. In the single-band case the Umklapp surface, across
which elastic Umklapp processes are allowed, will in gen-
eral be different from the Fermi surface, but at half-filling
each encloses the same volume. In Sr2RuO4 the fractional
occupancy of each subband clearly forbids elastic Um-
klapp scattering across the Fermi surface in low orders.
Indeed this may well be the reason that Sr2RuO4 forms a
good Landau-Fermi liquid, even though it is clearly close
to a Mott insulator. One way to enhance Umklapp scat-
tering is to transfer electrons between the subbands. This
will allow low-order Umklapp scattering, when integer oc-
cupancy of the subbands is reached.

The theoretical investigation at these concentrations
is inhibited by the lack of symmetry breaking at x ≈ xc.
Therefore we cannot use the LDA+U method to build in
the onsite correlations that are totally neglected in stan-
dard LDA calculations. Recently considerable progress
has been achieved on the theory of the Mott transition
in the Hubbard model by the use of the dynamic mean
field theory (DMFT) method [11,12]. This is essentially



V.I. Anisimov et al.: Orbital-selective Mott-insulator transition in Ca2−xSrxRuO4 195

−4 −3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.80

0.2

0.4

0.6

0.80

0.2

0.4

0.6

0.80

0.2

0.4

0.6

0.8

−4 −3 −2 −1 0 1 2 3

Energy (eV)

D
en

si
ty

 o
f s

ta
te

s

U=1.1

U=1.3

U=1.5

U=1.7

U=1.9

U=2.1

U=2.3

U=2.5

Fig. 6. Results of LDA+DMFT(NCA) calculations obtained
within LDA DOS for Sr2RuO4. The solid line is the DOS for
xz, yz-orbitals and the dashed line for (xy)-orbital. At U =
1.5 eV the xz, yz-orbitals become localized. At U = 2.5 eV
additionally the localization of xy-orbital occurs. The Fermi
energy is defined to be zero and was adjusted to conserve the
number of particles (4 electrons per site).

an expansion around an infinite coordination number and
formulates the problem in terms of an effective Anderson
impurity model which is to be solved self-consistently. In
this way the growth of onsite correlations can be treated
as the Mott transition is approached in a paramagnetic
metal. Recent advances use LDA calculations to determine
the input parameters and a non-crossing approximation
(NCA) to solve the effective Anderson model.

We performed a series of calculations using this LDA
+ DMFT (NCA) approximation scheme [26,27] for the
Sr2RuO4 structure. We increased the value of Hubbard-
U to examine how the onsite correlations grow. Figure 6
shows a series of results for the density of states (DOS) in
the xy- and (xz, yz)-subbands. Since these subbands have
quite different widths, the onset of Mott localization oc-
curs at different critical values of U . Thus we see that as U
is increased through a value of U ≈ 1.5 eV there is a trans-
fer of electrons between the subbands so that the integer
occupancy of 3 electrons and Mott localization appears
in (xz, yz)-subbands while the broader half-filled xy-band
remains itinerant. This unusual behavior is driven by the
combination of the crystal field splitting, as shown in Fig-
ure 2 ((xz, yz) lower) and the narrower bandwidth of the

(xz, yz)-orbitals. A further increase in the value of U to
U ≈ 2.5 eV is required to obtain Mott localization also in
the xy-subband.

These results lead us naturally to the following pro-
posal to explain the anomalous properties in the criti-
cal concentrations x = xc. The electronic configuration
is now (3,1). The 3 electrons in the {xz, yz}-subbands are
Mott localized and have a local moment of S = 1/2. The
remaining valence electrons are in the itinerant xy-band
and is responsible for the metallic character. Thus at this
concentration we have the unusual situation of localiza-
tion in only part of the 4d-orbitals and coexisting localized
and itinerant 4d-orbitals. Note that in the orthorhombic
crystal structure at x = xc the 2 subbands have differ-
ent parity under reflection around a RuO2-plane, similar
to tetragonal Sr2RuO4, which forbids direct hybridization
between the subbands. This proposal explains in a natural
way the unexpected moment of S = 1/2 of the Ru-ions and
the coexistence of metallic behavior and local moments.

Note that the calculations are carried out more con-
veniently by increasing the value of the onsite repulsion,
U which however should not change appreciably with the
concentration, x. In reality it is the bandwidth which is
changing with the decreasing x as the RuO6-octahedra
progressively rotate when Ca is substituted for Sr. The
key result however is the existence of a parameter range
where this partial localization is stable. The fact that we
calculated only for the highly symmetric Sr2RuO4 struc-
ture, rather than the distorted structure is, we believe,
unimportant in establishing this (3,1) configuration as a
stable electronic configuration.

3.2 Region II (0.5 > x > 0.2)

At lower values of x we enter Region II (0.5 > x > 0.2)
characterized by a tilting plus rotation of RuO6-
octahedra. Ca1.8Sr0.2RuO4 has a low-symmetry crystal
structure with the space group P21/c [28], which can be
obtained from the tetragonal I4/mmm structure by ro-
tating and tilting of the RuO6-octahedra similar to pure
Ca2RuO4 but with a smaller tilting angle [28] (Fig. 4c).
There are now two types of in-plane oxygen ions and
two types inequivalent of RuO6-octahedra. The RuO6-
octahedra continue to be elongated in this region so that
the xy-orbital continues to lie higher in energy. The metal-
lic character of the alloys in this region shows that the itin-
erant character of the xy-subband is preserved, although
the bandwidth will be narrowed by the additional tilt-
ing distortion of the RuO6-octahedra. Our conclusion is
that the (3,1) orbital occupation continues to hold also
in Region II with localization of the electrons only in the
{xz, yz}-subband.

3.3 Region I (0.2 > x > 0) Ca-rich

The Ca-rich region is characterized by a transition to an
insulating groundstate and simultaneously a change in the
crystal structure. The S-Pbca structure of the groundstate
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in this region evolves continuously out the groundstate of
pure Ca2RuO4. As discussed above, the change from elon-
gated to compressed RuO6-octahedra causes a switch in
LDA+U in the orbital occupation numbers to (2,2) i.e.
to a filled xy-subband and a half-filled {xz, yz}-complex.
Therefore we assign the insulating groundstate in all of
Region I, to an orbital occupation (2,2). The first order
transition between Regions II and I as x is decreased be-
low 0.2, is to be associated with a switch in the orbital
occupation from (3,1) to (2,2).

4 Magnetic properties of the different regions

4.1 Region III

We now turn to the magnetic properties at x ≥ xc = 0.5.
These are dominated by the local S = 1/2 moments. A
Kondo-type of interaction between the two bands (xz, yz)
and xy can be excluded due to the absence of hybridiza-
tion. The xy-orbital cannot hybridize with the other two,
since they have opposite parity with respect to reflection
on the basal plane. Via Hund’s rule coupling, however, an
RKKY interaction between the localized spins is induced,

HRKKY = −
∑
q

J2
Hχ(q)Sq · S−q (1)

where Sq = Syz,q + Szx,q and χ(q) is the static spin sus-
ceptibility in the dxy-band and JH is the onsite Hund’s
rule coupling, and promotes antiferromagnetic correla-
tions. At the same time, however, Hund’s rule coupling
may cause the ferromagnetic correlations through the dou-
ble exchange mechanism. Thus, the two types of spin
interactions mediated by the itinerant electrons of the
xy-band tend to compensate each other, such that the
net exchange coupling between neighboring localized spins
occurs mainly through superexchange processes in the
(xz, yz)-band. The highly anisotropic hopping matrix el-
ements between these orbitals, however, leads to an es-
sential dependence of the superexchange interaction on
the orbital configuration of the minority spin electron (or
single hole) of each Ru4+-ion in the degenerate (xz, yz)-
bands.

In order to gain more insight into the possible form
of the orbital ordering we performed LDA+U calculations
for the critical concentration xc = 0.5. Ca1.5Sr0.5RuO4 has
the space group I41/acd [28], i.e. the RuO6-octahedra are
only rotated around the c-axis with no tilting (Fig. 4b).
The RuO6-octahedra remain elongated to the same de-
gree as for pure Sr2RuO4 such that the xy-orbital is
still higher in energy than (xz, yz)-orbitals (Fig. 2, right
panel). Our calculation suggests that, under these condi-
tions, correlation yields the orbital degeneracy in a (3,1)
state. LDA+U calculations generally overestimate the sta-
bility of the Mott insulating state. In the present case
we find for U = 1.5 eV an insulating groundstate with a
charge gap also in the (xy)-subband.

Furthermore, the result of the the LDA+U calculation
shows that an orbital ordering of the AFO-type is favored

Fig. 7. Orbital ordering in Ca1.8Sr0.2RuO4. At the figure are
presented minority spin 4-d orbitals of Ru-atoms. z-axis directs
upwards; x, y-axes is parallel to a bases of oxygen octahedra.

yielding a ferromagnetic spin exchange. The minority-spin
electrons occupy alternating xz- and yz-orbitals with a
slight tilting of the orbital planes away from the c-axis.
This tilting indicates the partial admixture of dxy-orbitals
within the LDA+U approach.

4.2 Region II

Since magnetic properties are intimately connected to the
orbital order in {xz, yz}-subband, it is necessary to first
examine the effect of the crystalline distortion on the or-
bital order. To this end we performed LDA+U calculation
for this tilted structure and obtained a rather complicated
orbital order. The groundstate is an AF insulator. The
minority-spin electrons (1 per Ru-atom) occupy the or-
bitals whose planes are in average directed along the a-axis
(in tetragonal notation (110) direction). However on ev-
ery one of the 4 Ru-atoms in the unit cell those planes are
rotated from the a-axis by +20◦ and +15◦ on one layer
and by −20◦ and −15◦ on the next layer. On the average
the orbital orientation corresponds to the state dyz + dzx.
Also on one of the 2 Ru-atoms in every layer there is an
additional tilting of the orbital plane from the long c-axis
on 34◦ (see Fig. 7) which corresponds to the admixture
of the xy-orbital component. The calculation of the easy
axis using the second order perturbation theory for spin-
orbit coupling gave the direction of the magnetic moment
as along the a-axis (tetragonal [11̄0] direction) with a 28◦
tilt from the layer plane (see Appendix). Measurements
of the uniform magnetic susceptibility show a peak in the
temperature dependence which is most pronounced for the
[110] direction of the magnetic field, in agreement with our
LDA+U results [3].

4.3 Region I

The orbital configuration (2,2) is non-degenerate as
Hund’s Rule determines a fully spin polarized S = 1
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ionic groundstate with a single minority-spin electron in
the xy-orbitals. The LDA+U method works well here and
gives an AF Mott insulating groundstate.

Throughout Region I, there is a first order insulator
to metal transition as the temperature is raised accom-
panied by a switch from compressed to elongated RuO6-
octahedra. It is tempting to interpret this as a first or-
der transition between the orbital occupancies from (2,2)
to (3,1). However a detailed examination of this proposal
has not been made. In this context it would be also in-
teresting to study the effect of pressure. Since the low-
temperature phase of Ca2RuO4 has larger volume than
the high-temperature phase (see Tab. 1), pressure tends
to stabilize the latter. Assuming that indeed the (3,1) elec-
tronic distribution is realized in this structural state, then
a orbitally ordered phase accompanied by magnetic order
based on the localized spin-1/2 degree of freedom could
be realized at low enough temperature. Since the crystal
structure is close to the one at x = 0.2 (see Tab. 1) one
might conclude that AF order would prevail. However, as
we will see in the next section, the final form of the ex-
change interactions between the spins is a subtle issue, in
particular, if a staggered orbital component are included.

5 Effective model for the (3,1) electron
distribution

5.1 Derivation of spin-isospin Hamiltonian

In this section we derive the effective Hamiltonian for the
localized spin and orbital degrees of freedom in the elec-
tron configuration (n(α,β), nγ) = (3, 1) which covers the
boundary of region II and III and all of region II. The
electrons in the dyz- and dzx-orbital are localized, while
the γ-band remains metallic, although it is half-filled. We
ignore here this metallic band and concentrate on the lo-
calized degrees of freedom. The single hole occupying the
two localized orbitals has a spin-1/2 and orbital index.
The latter can be described as isospin-1/2 using the no-
tation |+〉 for the dyz- and |−〉 for the dzx-orbital. The
isospin operator I acts on these states by Iz|±〉 = ± 1

2 |±〉
and is a generator of an SU(2) transformation in orbital
space.

We will concentrate on the strongest interaction be-
tween the localized degrees of freedom. The nearest-
neighbor hopping due to π-hybridization between the
Ru-d and O-p-orbitals lead to the formation of two in-
dependent quasi-one-dimensional bands, with dispersion
in y (x)-direction for the dyz (dzx)-orbital. Including the
onsite interactions the Hamiltonian for these two orbitals
has the form

H = −t
∑
i,a,s

(c†i+ax,−,sci,−,s + c†i+ay,+,sci,+,s + h.c.)

+U
∑

i,µ=+,−
ni,µ,↑ni,µ,↓ + U ′

∑
i

ni,+,sni,−,s′

−2JH

∑
i

(Si,+ · Si,− +
1
4
ni,+ni,−) (2)

where t denotes the hopping matrix element, U and U ′ are
the onsite intra- and interorbital Coulomb repulsion and
JH is the Hund’s rule coupling (the vector a = (1, 0) and
(0, 1) connects the nearest neighbor sites). We can reduce
the number of parameters by the relation U = U ′ + 2JH.

We now consider the case of a nearest-neighbor bond
along the x-direction and calculation the effective spin-
spin interaction for different orbital configurations. For
illustration of the processes involved we introduce the
following self-explanatory notation shown in the two
examples,

|+, ↑〉i ⊗ |+, ↓〉i+ax =
∣∣∣∣ ↑ ↓↑↓ ↑↓

〉
(3)

|+, ↑〉i ⊗ |−, ↑〉i+ax =
∣∣∣∣ ↑ ↑↓↑↓ ↑

〉
· (4)

The upper (lower) row in the isospinor notation corre-
spond to the dyz (dzx)-orbital. Now we discuss the virtual
exchange processes leading to the spin interactions for the
x-bond.

(1) The configuration |+, s〉 ⊗ |+, s′〉 does not lead
to any interaction. (2) The configuration |−, s〉 ⊗ |−, s′〉
yields antiferromagnetic superexchange through the ex-
change path,∣∣∣∣ ↑↓ ↑↓↑ ↓

〉
−t→
∣∣∣∣↑↓ ↑↓0 ↑↓

〉
−t→
∣∣∣∣↑↓ ↑↓↓ ↑

〉
· (5)

This leads to an effective Hamiltonian

H′ = J

(
Si · Si+ax −

1
4

)
(6)

with an exchange coupling constant

J =
4t2

U
· (7)

(3) Finally the configuration |+, s〉 ⊗ |−, s′〉 gives an fer-
romagnetic spin coupling by the following type of path,∣∣∣∣ ↑ ↑↓↑↓ ↑

〉
−t→
∣∣∣∣↑ ↑↓↑ ↑↓

〉
−t→
∣∣∣∣ ↑ ↑↓↑↓ ↑

〉
· (8)

Here the intermediate state has lower energy, if the two
spins are in a triplet configuration due to the Hund’s
rule coupling. The interaction energies for the interme-
diate states corresponding to the spin singlet and triplet
state are

∆Esinglet = U ′ + JH (9)
∆Etriplet = U ′ − JH (10)

so that the effective Hamiltonian can be cast into the form

H′′ = J ′
(

Si · Si+ax +
1 + α

2(1− α)

)
(11)

with

J ′ = − 2t2JH

U ′2 − J2
H

= −J 1− α
(3α− 1)(α+ 1)

(12)
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where α = U ′/U < 1. Note that α should be sufficiently
larger than 1/3 in order that the second-order perturba-
tion approach is valid and the electron distribution (3,1)
is unique. The orbital configurations in the basis of |+〉
and |−〉 are not affected in this second order perturba-
tion scheme. Therefore the effective isospin Hamiltonian
is Ising-like.

Turning to the bond along the y-axis we need only
to exchange the role of the two orbitals (dyz and dzx)
and obtain the same result. Therefore we can write the
complete effective Hamiltonian for the localized degrees
of freedom as,

H = J
∑
i,a

[{
A(Izi+a + ηa)(Izi + ηa) +B

}
Si+a · Si

+[C(Izi+a + η′a)(Izi + η′a) +D
]

(13)

where the coefficients are given by

A =
3α2 + 1

(3α− 1)(α+ 1)
(14)

B =
−(1− α)2

(3α2 + 1)(3α− 1)(α+ 1)
(15)

C =
5− 3α

4(3α− 1)
(16)

D =
1

(5− 3α)(3α− 1)
(17)

ηa = − (3α− 1)(α+ 1)
2(3α2 + 1)

(a2
x − a2

y) (18)

η′a = − 3α− 1
2(5− 3α)

(a2
x − a2

y). (19)

Note that the coefficients ηa and η′a have opposite sign for
the x- and y-axis bonds.

Lattice distortions breaking the tetragonal symmetry
yield a bias for the local orbital configuration. For the two
basic orthorhombic distortions, described by the lattice
strain combinations ε1 = εxx−εyy and ε2 = εxy (tetragonal
notation), we can add the following coupling terms to the
Hamiltonian,

Hdist =
∑
i

[K1ε1I
z
i +K2ε2I

x
i ] (20)

where K1 and K2 are coupling constants. Note that the
first term corresponds to a uniform field parallel to the
z-axis of the isospin, while the second is a transverse field.
Both drive a ferro-orbital correlation.

5.2 Mean field discussion

We analyze now the properties of our effective model by
means of mean field theory ignoring fluctuations and the
influence of the itinerant xy-band. This discussion shows
that the main features of the different phases where the
electron distribution (3,1) is applicable are indeed de-
scribed well within our reduced effective model. A discus-
sion beyond the mean field level will be given elsewhere.

0.4 0.6 0.8 1
α 

0

0.1

0.2

0.3

0.4

k B
T

/4
J

AFO

FM+AFO

Fig. 8. Mean field phase diagram temperature versus α =
U ′/U for x = 0.5.

5.2.1 Tetragonal system

The analysis of the parameters of the effective Hamilto-
nian shows that a higher energy scale is associated with
the isospins. Their basic interaction is of Ising-AFO-type,
because C > 0 for all α in the proper range. As a con-
sequence the spins correlate ferromagnetically at a lower
energy scale. Hence, we will decouple the effective Hamil-
tonian for the spin and isospin with mean values,

mI = 〈Izi 〉 and s = 〈Szi 〉 (21)

where mI is staggered with opposite sign on the two sub-
lattices and s is uniform. The coupled self-consistent equa-
tions are obtained readily,

mI =
∑
r=±1 re

βCrmI cosh
(
β
(
A
(
η2
a − rmI

2

)
+B

)
s
)

2
∑
r=±1 eβCrmI cosh

(
β
(
A
(
η2
a − rmI

2

)
+B

)
s
)
(22)

s =

∑
r=±1 eβCrmI sinh

(
β
(
A
(
η2
a − rmI

2

)
+B

)
s
)

2
∑
r=±1 eβCrmI cosh

(
β
(
A
(
η2
a − rmI

2

)
+B

)
s
) (23)

where β = J/2kBT is the inverse temperature in units of
the exchange energy J . The isospin order has the higher
transition temperature T0 determined by the equation

kBT0 =
CJ

4
· (24)

The onset of FM order occurs at much lower temperature
so that it is justified to consider mI as already saturated,
mI = 1/2. Then Curie-temperature for the spin is given by

kBTC = −J
4

[
A

(
η2
a −

1
4

)
+B

]
. (25)

In Figure 8 we show the phase diagram of temperature
versus the parameter α = U ′/U which determines the
coupling constants. The tendency towards FM order is
in good agreement with the LDA+U result for x = 0.5,
apart from the fact that the contributions of xy-orbital
have been ignored. This analysis suggests that the orbital
order is governed by the exchange processes included in
our Hamiltonian.
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5.2.2 Crystal distortion

Let us now consider the influence of a spontaneous crystal
deformation which characterizes region II (0.2 < x < 0.5).
We will not discuss the origin of the distortion, but take
it as given with a strength which depends on x. The FO
bias introduced by a uniform lattice distortion is in com-
petition with the AFO exchange interaction. In particu-
lar, a finite strain ε2 would introduce a transverse field
in the effective Ising Hamiltonian for orbital interactions.
An Ising-model in a transverse field has a quantum critical
point beyond which the AFO order would be suppressed
for any temperature.

We consider here the general case where both ε1 and
ε2 are finite, as realized in Region II. We distinguish now
between the two sublattices A and B on the square lattice
and assign different mean fields to them. Analogous
to the case above we may separate the spin and the
isospin problem. First we consider the isospin problem
in the absence of spin correlation. The corresponding
self-consistent equations have the form,

mIA = f(β,mIB) and mIB = f(β,mIA) (26)

with

f(β,m) = − 2JCm+K1ε1

2
√

(2JCm+K1ε1)2 +K2
2ε

2
2

× tanh
(
β
√

(2JCm+K1ε1)2 +K2
2ε

2
2

)
.

(27)

It is easy to verify from this set of equations that for
finite crystal distortion there is a uniform component
m = (mIA + mIB)/2 at all temperatures and that the
staggered moment mI = (mIA −mIB)/2 occurs only at
low temperature or not at all, depending on which side of
the quantum critical point the system lies. Hence the stag-
gered moment may play a minor role on the background
of the uniform FO orbital arrangement.

In Figure 9 the numerical solution of equations (26, 27)
is shown for α = 0.75 assuming that both ε1 and ε2 are fi-
nite with a ratio K1ε1/K2ε2 = 3/2. Turning ε1,2 gradually
on we observe that the staggered AFO component is di-
minished in favor of the FO arrangement (Fig. 9a) with a
critical point where the staggered component completely
vanishes. Figure 9b shows the orbital orientation on the
two sublattices |d〉A,B = cosφA,B |+〉 + sinφA,B |−〉. Ob-
viously, very close to the quantum critical point we find
a dominant FO arrangement with a weak staggered com-
ponent. This describes qualitatively the favored ordering
pattern in the LDA+U calculation for x = 0.2, where in
each layer the orbital plane has an alternating orientation
of 20◦ and 15◦ with respect to the [110] (FO) direction.
The comparison with our mean field data suggests that
the system is then rather close to the quantum critical
point.

Assuming again that at the energy scale where spin
correlation sets in the orbital pattern is basically estab-
lished, we draw the diagram of transition temperature
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Fig. 9. Effect of lattice deformation K1ε1 = 1.5K2ε2 = Kε on
the orbital order and the effective spin exchange (α = 0.75).
Top: Staggered orbital moment mI and uniform orbital mo-
ment m; Middle: Orientation of the orbital plane cos φ|+〉 +
sinφ|−〉 for the sublattices A and B; Bottom: effective spin
exchange ferromagnetic and antiferromagnetic.

versus the strain in Figure 9c. Then we analyze the spin
correlation fixing the orbital order by the T = 0-solution
of equations (26, 27). This is again justified by the ob-
servation that the isospin mean field has saturated at the
temperature when spin order sets in. We find weak ferro-
magnetic coupling for small distortion and stronger anti-
ferromagnetic coupling for larger distortion. The crossover
in the spin interaction is still in the region of rather strong
staggered orbital correlations. Note that the crossover
point between FM and AF spin exchange depends on α
and move towards larger Kε for smaller α.

Guided by this phase diagram we may interpret the
region II in terms of increasing strain as we progress from
x = 0.5 to 0.2. At x = 0.2 the quantum critical point has
been approached but not passed. This interpretation is
entirely based on the localized orbitals of the α-β-bands.
From the LDA+U calculation we conclude, however, that
the γ -band is also involved in the spin correlations, as is
seen in the tilting of the orbital plane away from the z-axis
for the minority spins. As mentioned earlier the γ-band
should introduce an RKKY-interaction via the Hund’s
rule coupling, which is most likely antiferromagnetic, thus
further diminishing the FM correlation.

An interesting feature occurs in our effective model
in connection with the sign change of the spin exchange
interaction as mentioned above. Ca2−xSrxRuO4 as a ran-
dom alloy does not provide a uniform crystal deformation,
but the strain depends on the local Sr and Ca distribu-
tion around each Ru-ion. Thus, in the regime of switching
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Table 2. Regions of Ca2−xSrxRuO4 with orbital occupancy, localized orbital and spin degrees of freedom and order or (dominant
correlations) (AF = spin antiferromagnetic, FM = spin ferromagnetic, AFO = antiferro-orbital, FO = ferro-orbital).

Region (nyz,zx, nxy) orbital spin order (correlation)

I (0 ≤ x < 0.2) (2,2) – S = 1 AF

II (0.2 ≤ x < 0.5) (3,1) (yz, zx) S = 1
2

FO, (AF)

III (x→ 0.5) (3, 1) (yz, zx) S → 1
2 (AFO) , (FM)

III (x = 2)
�

8
3
, 4

3

�
– S=0 –

between FM and AF coupling, this can lead to frustra-
tion effects at low temperature. Recent experimental data
indicate indeed a glass-like behavior [30].

6 Discussion

We have presented a consistent picture for the unusual
phases of the isoelectronic alloy series Ca2−xSr2RuO4

based on the full multi-band electronic structure (see
Tab. 2). Starting from the good metal Sr2RuO4, we find
the effect of Ca-substitution is to transfer electrons from
the wider xy-band to the narrower (xz, yz) bands until
at a critical value of xc = 0.5 there is integer occupancy
of both subbands. The progressive rotation of the RuO6

octahedra in this region leads to Mott localization of the
3 electrons in the narrower (xz, yz) bands while the wider
xy-band which is now half-filled, remains metallic. This
partial localization of the 4d electrons can explain the puz-
zling observation of the coexistence of free S = 1/2 local
moments and metallic behavior in Ca1.5Sr0.5RuO4. The
actual metal to insulator transition occurs between the
Ca-rich Regions I (0 ≤ x < 0.2) and II (0.2 ≤ x < 0.5).
We interpret this transition as driven by a change in the
orbital occupancy to a completely filled xy-band leaving
2 electrons in the localized (xz, yz) bands. In this case
the ordered local spin has the conventional value, S = 1,
whereas in the metallic Region II short-range correlations
of a local S = 1/2 spin combined with orbital order are
realized, generating a pronounced anisotropy in the mag-
netic response.

One of the curious aspects of Region II is the fact that
the half-filled xy-orbital remains itinerant. It is not easy
to test experimentally which among the bands is really
responsible for the metallic behavior. The basic feature
of the state we propose is the presence of a single Fermi
surface of electron-like character in the xy- or γ-sheet.
One method which might be able to probe this proposal
is angle-resolved photo emission spectroscopy (ARPES).

Recently the electronic structure and magnetic prop-
erties of Ca2−xSr2RuO4 have also been investigated by
LSDA calculations [29]. The authors have concluded that
the crystal structure distortions (rotation, tilt and com-
pression of the O-octahedra) when Ca is substituted for Sr
lead to a narrowing and shifting of the bands and hence to
the enhancement of ferro- and antiferromagnetic instabil-
ities. However these calculations do not include the effects
of onsite Coulomb interactions between d-electrons which
are responsible for the suppression of charge fluctuations

and for the Mott metal-insulator transition as Ca2RuO4

is approached.
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Appendix A: Effect of spin-orbit coupling

For the Ru 4d-t2g-orbitals spin-orbit coupling plays an im-
portant role. If we restrict to the three t2g-orbitals, the
onsite spin-orbit coupling Hamiltonian can is given by

Hs−o = λ
∑
i

∑
a,b,c

∑
s,s′

εabcc
†
ia,sσ

c
ss′cib,s′ (A.1)

where λ is the coupling constant and εabc the completely
antisymmetric tensor (a, b, c = {x, y, z}). We identify the
indices x, y and z with the orbitals dyz, dzx and dxy,
respectively.

In the framework of LDA+U calculation the easy axis
direction was calculated via minimizing the energy of spin-
orbit coupling in the second order perturbation theory as
a function of Euler angles (α, β, γ) defining the direction
of magnetization:

E(α, β, γ) =
∑
k

∑
nσ,n′σ′

fnσk − fn′σ′k
Enσ(k)−En′σ′(k)

|〈Ψknσ |̂l · ŝ′|Ψkn′σ′〉|2, (A.2)

l̂ · ŝ′ =
∑
µ

l̂µ · ŝ′µ =
∑
µν

l̂µ · Uµν(α, β, γ)ŝν (A.3)

where Enσ(k) is the energy of nth band for spin projection
σ at point k in the Brillouin zone, fnσk is equal 1 if the
corresponding band is occupied (its energy is below the
Fermi level) and is equal 0 in the opposite case. Ψkn′σ′
is the Bloch wave function, l̂µ and ŝν are components of
vector operators of orbital and spin moments, Uµν(α, β, γ)
is transformation matrix for rotation of a vector for Euler
angles (α, β, γ).
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